If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2+5=29x
We move all terms to the left:
20x^2+5-(29x)=0
a = 20; b = -29; c = +5;
Δ = b2-4ac
Δ = -292-4·20·5
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-29)-21}{2*20}=\frac{8}{40} =1/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-29)+21}{2*20}=\frac{50}{40} =1+1/4 $
| -2x+50=-50+-2 | | (x-4)/4=4(4x-16) | | p²-6p-24=0 | | -(7x+3)=2x^2 | | p²-6-24=0 | | (x-3)/3=3(3x-9) | | 4(×+3)=3x+2+x | | 2x+4x-8x-6x=6 | | (x-6)/6=6(6x-36) | | 2x+9=5x6x-2+x | | 11^(5x)=30 | | (x-2)/2=2(2x-4) | | 3x5x=22 | | 6-5y=-8 | | 4t-8=20-2t | | 2(2-x)=1+3x | | 3^4x-7=27^2x+3 | | 3(3-x)=2(2+x) | | 20n=14 | | 9(9-x)=6(6+x) | | -4(4a-6)=-40-8a | | |6u-18|=6 | | 11^2x+1=121^3x | | 10=7+v/3 | | 4(4-x)=2(+x) | | -28=-2(m+4)+m | | 33=(2p-1)-2 | | 27/63=3/x | | 6(6-x)=2(3+2x) | | 33=(2p-1 | | 33=2p-1 | | 6(2^x)=50.1 |